2-6 EXAMPLES

1. Evaluate the following limits and justify your answers.
(a) $\lim _{x \rightarrow-\infty} \frac{x+2}{2+x^{2}} \cdot \frac{1 / x^{2}}{1 / x^{2}}=\lim _{x \rightarrow-\infty} \frac{x^{-1}+2 x^{-2}}{2 x^{-2}+1}=\frac{0+0}{0+1}=0$
(b) $\lim _{x \rightarrow \infty} \frac{1-x^{3}}{x+4 x^{2}} \cdot \frac{1 / x^{2}}{1 / x^{2}}=\lim _{x \rightarrow \infty} \frac{x^{-2}-x}{x^{-1}+4}=-\infty$
(c) $\lim _{x \rightarrow \infty} \frac{3 \sqrt{x}+1}{4 \sqrt{x}-1} \cdot \frac{1 / \sqrt{x}}{1 / \sqrt{x}}=\lim _{x \rightarrow \infty} \frac{3+1 / \sqrt{x}}{4-1 / \sqrt{x}}=\frac{3+0}{4-0}=3 / 4$
(d) $\lim _{x \rightarrow-\infty} \frac{\sqrt{x+x^{4}}}{2+x^{2}} \cdot \frac{1 / x^{2}}{1 / x^{2}}=\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{-3}+1}}{2 x^{-2}+1}=1$
(e) $\lim _{x \rightarrow \infty}\left[\ln \left(x^{2}+\sqrt{2}\right)-\ln \left(3 x^{2}-x\right)\right]=\lim _{x \rightarrow \infty} \ln \left(\frac{x^{2}+\sqrt{2}}{3 x^{2}-x}\right)$

$$
=\ln \left[\lim _{x \rightarrow \infty} \frac{x^{2}+\sqrt{2}}{3 x^{2}-x}\right]=\ln \frac{1}{3}
$$

(f) $\lim _{x \rightarrow \infty} \frac{1-e^{x}}{2+8 e^{x}} \cdot \frac{e^{-x}}{e^{-x}}=\lim _{x \rightarrow \infty} \frac{e^{-x}-1}{2 e^{-x}+8}=\frac{-1}{8}$

Since $e^{-x}=\frac{1}{e^{x}} \rightarrow 0$ as $x \rightarrow \infty$.
(g)

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} x^{-5 / 3} \cos x=\lim _{x \rightarrow} \frac{\cos x}{x^{5 / 3}}=0 \\
& \frac{-1}{x^{5 / 3}} \leq \frac{\cos x}{x^{5 / 3}} \leq \frac{1}{x^{5 / 3}} \quad \text { for all } x .
\end{aligned}
$$

and $-1 / x^{5 / 3} \rightarrow 0$ and $1 / x^{5 / 3} \rightarrow 0$ as $x \rightarrow \infty$.
(h) $\lim _{x \rightarrow-\infty} \arctan (2 x)=-\pi / 2$
from the graph.

2. Sketch the graph of an example of a function f that satisfies all of the given conditions:
(i) $\lim _{x \rightarrow 0} f(x)=-\infty$
(ii) $\lim _{x \rightarrow \infty} f(x)=5$
(ii) $\lim _{x \rightarrow-\infty} f(x)=-2$

3. Let $v(t)=a\left(1-e^{-g t / a}\right)$ where a and g are fixed positive constants.
(a) Determine $\lim _{t \rightarrow \infty} v(t)$ and explain your reasoning.

$$
\begin{gathered}
\lim _{t \rightarrow \infty} a\left(1-e^{-g t / a}\right)=a \\
\text { Reasoning: As } t \rightarrow \infty,-\frac{q^{t}}{b} \rightarrow-\infty \text {. So } e^{-g t / a} \rightarrow 0 .
\end{gathered}
$$

(b) Assume that $v(t)$ is the velocity of a falling raindrop and g is acceleration due to gravity. How would you interpret your answer to part (a)?
As time goes forward-thatis, as the raindrop falls - its velocity approaches the number a which must be the terminal velocity of the raindrop

